碩導(dǎo)信息
張晰 研究員
張晰 研究員
資        格 博士生導(dǎo)師、碩士生導(dǎo)師
所在部門(mén) 海洋物理與遙感研究室
郵        箱 xi.zhang@fio.org.cn
招生專(zhuān)業(yè) 物理海洋學(xué)
研究方向 海洋微波遙感
個(gè)人簡(jiǎn)介

張晰,博士,自然資源部第一海洋研究所研究員,中國(guó)石油大學(xué)(華東)博生生導(dǎo)師和碩士生導(dǎo)師,中國(guó)海洋學(xué)會(huì)人工智能海洋學(xué)專(zhuān)委會(huì)委員、中國(guó)地理信息產(chǎn)業(yè)協(xié)會(huì)海洋時(shí)空信息工委會(huì)委員、中國(guó)自動(dòng)化學(xué)會(huì)國(guó)防大數(shù)據(jù)專(zhuān)業(yè)委員會(huì)委員Frontiers in Marine Science執(zhí)行編輯,《電波科學(xué)學(xué)報(bào)》編委,IEEE Geoscience and Remote Sensing Magazine等多個(gè)SCI特刊編輯。

主要從事SAR海洋遙感與雷達(dá)目標(biāo)探測(cè)技術(shù)研究,作為負(fù)責(zé)人主持國(guó)家自然科學(xué)基金、中央軍委裝備發(fā)展部預(yù)研基金重點(diǎn)項(xiàng)目、中國(guó)海監(jiān)科技支撐項(xiàng)目等項(xiàng)目20余項(xiàng)。現(xiàn)已發(fā)表學(xué)術(shù)論文100余篇,其中SCI/EI論文70余篇;以第一作者和通訊作者SCI論文30余篇,多篇論文進(jìn)入ESI1%高被引和ESI熱點(diǎn)論文。山東省科技進(jìn)步等省部級(jí)獎(jiǎng)勵(lì)6項(xiàng);出版專(zhuān)著3,編制行業(yè)標(biāo)準(zhǔn)1項(xiàng)。


發(fā)表論文

1. Xi Zhang; Gui Gao; Si-Wei Chen. Polarimetric Autocorrelation Matrix: A New Tool for Joint Characterizing of Target Polarization and Doppler Scattering Mechanism, IEEE Transactions on Geoscience and Remote Sensing, 2024. 10.1109/TGRS.2024.3398632. (ESI高被引論文)

2. Chi Zhang, Xi Zhang (通訊作者), Gui Gao, Haitao Lang, Genwang Liu, Chenghui Cao, Yuying Song, Yanan Guan and Yongshou Dai. Development and Application of Ship Detection and Classification Datasets: A review, IEEE Geoscience and Remote Sensing Magazine, 2024, 10.1109/MGRS.2024.3450681. (ESI高被引論文+熱點(diǎn)論文)

3. Xi Zhang; Wolfgang Dierking; Jie Zhang; Junmin Meng; Haitao Lang; Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images, The Cryosphere, 2016.7.19, 10(4): 1529-1545.

4. Zhang Xi, Zhu Y, Zhang J, et al. Assessment of Arctic Sea Ice Classification Ability of Chinese HY-2B Dual-Band Radar Altimeter During Winter to Early Spring Conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9855-9872.

5. Xi Zhang; Wolfgang Dierking; Jie Zhang; Junmin Meng; A Polarimetric Decomposition Method for Ice in the Bohai Sea Using C-Band PolSAR Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 47-66.

6. Zhang Xi; Zhang Jie; Liu Meijie; Meng Junmin; Assessment of C-band compact polarimetry SAR for sea ice classification, Acta Oceanologica Sinica, 2016.5, 35(5): 79-88.

7. Zhang Xi; Zhang Jie; Meng Junmin; SuTengfei; Analysis of multi-dimensional SAR for determining the thickness of thin sea ice in theBohai Sea, Journal of Oceanology and Limnology, 2013.5, 31(3):681-698.

8. Xi Zhang, Yixun Zhu, Jie Zhang, Junmin Meng, Xiaona Li, Xingxing Li. An Algorithm for Sea Ice Drift Retrieval Based on Trend of Ice Drift Constraints from Sentinel-1 SAR Data. Journal of Coastal Research, SI(102): 113-126, 2020.

9. Zhang X, Zhao Q, Gao G, et al. Impact and Correction of Sea Ice, Snow, and Sea-water Density on Arctic Sea Ice Thickness Retrieval from Ku-band SAR Altimeters. IEEE Journal on Miniaturization for Air and Space Systems, 2022.

10. Chenghui Cao; Liwei Bao; Gui Gao; Genwang Liu; Xi Zhang (通訊作者). A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning from Sentinel-1 Wave Mode Data, IEEE Transactions on Geoscience and Remote Sensing, 2024. 10.1109/TGRS.2024.3369080

11. Guan Y, Zhang X (通訊作者), Chen S, et al. Fishing Vessel Classification in SAR Images using a Novel Deep Learning Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023.

12. Guan Y, Zhang J, Zhang Xi (通訊作者), et al. Identification of fishing vessel types and analysis of seasonal activities in the northern South China Sea based on AIS data: A case study of 2018. Remote Sensing, 2021, 13(10): 1952.

13. Liu M, Yan R, Zhang Xi (通訊作者), et al. Arctic Sea Ice Classification Based on CFOSAT SWIM Data at Multiple Small Incidence Angles. Remote Sensing, 2021, 14(1): 91.

14. Bao L, Zhang Xi (通訊作者), Cao C, et al. Impact of Polarization Basis on Wind and Wave Parameters Estimation Using the Azimuth Cutoff From GF-3 SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16.

15. Zhang R, Zhang J, Zhang Xi (通訊作者), et al. Influence of Radar Parameters and Sea State on Wind Wave-Induced Velocity in C-Band ATI SAR Ocean Surface Currents. Remote Sensing, 2022, 14(17): 4135.

16. Wang, P.; Zhang Xi (通訊作者); Shi, L.; Liu, M.; Liu, G.; Cao, C.; Wang, R. Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data. Remote Sens. 2024, 16, 1100. https://doi.org/10.3390/rs16061100.

17. Guan Y, Zhang J, Zhang Xi (通訊作者), et al. Study on the activity laws of fishing vessels in China's sea areas in winter and spring and the effects of the COVID-19 pandemic based on AIS data. Frontiers in Marine Science, 2022: 588.

18. Liu M, Yan R, Zhang Xi (通訊作者), et al. Sea ice recognition for CFOSAT SWIM at multiple small incidence angles in the Arctic[J]. Frontiers in Marine Science, 2022: 1777.

19. Zhang C, Zhang Xi (通訊作者), Zhang J, et al. Evaluation and Improvement of Generalization Performance of SAR Ship Recognition Algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9311.

20. Fang H, Zhang Xi (通訊作者), Shi L, et al. Evaluation of Arctic Sea Ice Drift Products Based on FY-3, HY-2, AMSR2, and SSMIS Radiometer Data. Remote Sensing, 2022, 14(20): 5161.

21. Guan Y, Zhang J, Zhang Xi (通訊作者), et al. Impacts of the COVID-19 Epidemic on Ship Activity in Dongying Port Waters[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2022.

22. Lang Haitao; Zhang Jie; Zhang, Xi (通訊作者); Meng Junmin; Ship Classification in SAR Image by Joint Feature and Classifier Selection, IEEE Geoscience and Remote Sensing Letters, 2016.2, 13(2): 212-216.

23. Shen Xiaoyi; Simil? Markku; Dierking Wolfgang; Zhang Xi (通訊作者); Ke Changqing; Liu Meijie; Wang Manman. A New Retracking Algorithm for Retrieving Sea Ice Freeboard from CryoSat-2 Radar Altimeter Data during Winter–Spring Transition. Remote Sens. 2019, 11, 1194

24. Xiaoyi Shen; Jie Zhang; Junmin Meng; Changqing Ke; Xi Zhang(通訊作者); Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier–Feature Assembly, IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1948-1952.

25.Chi Zhang, Genwang Liu, Chenghui Cao, Jun Sun, Yongshou Dai, Xi Zhang(通訊作者). SCA-Net A Network Based on Multi-task Learning for Sea Clutter Amplitude Distribution Prediction of SAR Images, IEEE Geoscience and Remote Sensing Letters, 2025, 10.1109/LGRS.2025.3550409.

26. Song Yuying; Liu Genwang; Zhang Xi (通訊作者); Zhang Chi; Cao Chenghui; Zhou Peng. A Method for Retrieving Ship Freeboard Height by Single-Pass PolSAR Data, IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.

27. Liu Wensong; Sheng Hui; Zhang Xi(通訊作者);Sea ice thickness estimation inthe Bohai Sea using geostationary ocean color imager data, Acta Oceanologica Sinica, 2016, 35(7): 105-112.

28. Guo Jie; Zhang Tianlong; Zhang Xi (通訊作者); Liu Genwang; Impact of emulsification of crude oil on normalized radar cross section. Journal of Oceanology and Limnology, 2019. https://doi.org/10.1007/s00343-019-8298-3

29. Yanan Guan, Xi Zhang(共同第一作者), Gui Gao, Chenghui Cao, Zhongwei Li, Shihao Fu, Genwang Liu. A new indicator for assessing fishing ecological pressure using multi-source data: A case study of the South China Sea. Ecological Indicators, Volume 170, 2025, 113096, ISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2025.113096.


獲獎(jiǎng)與榮譽(yù)

[1] “目標(biāo)聯(lián)合監(jiān)視關(guān)鍵技術(shù)與應(yīng)用”,2024年山東省科學(xué)技術(shù)進(jìn)步獎(jiǎng)一等獎(jiǎng);個(gè)人排名第四.

[2] “天基多源信息融合海面運(yùn)動(dòng)目標(biāo)感知關(guān)鍵技術(shù)與裝備”,2022年測(cè)繪科學(xué)技術(shù)獎(jiǎng)二等獎(jiǎng);中國(guó)測(cè)繪學(xué)會(huì);個(gè)人排名第三.

[3] “復(fù)雜海洋環(huán)境SAR時(shí)敏目標(biāo)解譯關(guān)鍵技術(shù)與重大應(yīng)用”,2024年地理信息科技進(jìn)步獎(jiǎng)一等獎(jiǎng);中國(guó)地理信息產(chǎn)業(yè)協(xié)會(huì);個(gè)人排名第四.

[4] “成像雷達(dá)目標(biāo)極化旋轉(zhuǎn)域識(shí)別技術(shù)與應(yīng)用”,2023年發(fā)明創(chuàng)業(yè)獎(jiǎng)創(chuàng)新獎(jiǎng)一等獎(jiǎng);中國(guó)發(fā)明協(xié)會(huì); 個(gè)人排名第四.

[5] “基于多源遙感手段的北海區(qū)海洋災(zāi)害業(yè)務(wù)化應(yīng)急監(jiān)測(cè)系統(tǒng)研制與應(yīng)用”,2016年度海洋科學(xué)技術(shù)獎(jiǎng)一等獎(jiǎng);國(guó)家海洋局、中國(guó)海洋學(xué)會(huì)、中國(guó)太平洋學(xué)會(huì)、中國(guó)海洋湖沼學(xué)會(huì);個(gè)人排名第五.

[6] “我國(guó)海洋衛(wèi)星極區(qū)海冰遙感反演方法”,中國(guó)太平洋學(xué)會(huì)國(guó)家級(jí)優(yōu)秀海洋圖書(shū)獎(jiǎng),2023;個(gè)人排名第三.

[7] 便攜式多載體毫米波合成孔徑雷達(dá)成像算法研究與創(chuàng)新應(yīng)用,山東省研究生創(chuàng)新成果,2023;個(gè)人排名第二.

[8] 國(guó)家遙感中心和歐洲空間局“龍計(jì)劃”國(guó)際合作突出貢獻(xiàn)獎(jiǎng),排名第1,2016.

[9] 《極化SAR海洋應(yīng)用理論與方法》, 孟俊敏, 張晰. 國(guó)防工業(yè)出版社, 2024.

[10] 《多通道SARAIS海上目標(biāo)綜合感知理論與方法》,高貴, 張晰, 姚力波, 劉濤. 海洋出版社, 2025.

[11] 《我國(guó)海洋衛(wèi)星極區(qū)海冰遙感反演方法》,石立堅(jiān)、王其茂、張晰,海洋出版社, 2022

[12] 行業(yè)標(biāo)準(zhǔn). 孟俊敏; 張晰; 劉根旺; 計(jì)科峰; 陳思偉; 高貴; 冷祥光; 熊博蒞; 熊偉; 姚力波; 張馳. 海上船只目標(biāo)衛(wèi)星遙感監(jiān)測(cè)技術(shù)規(guī)范, CH/T 7004-2024, 自然資源部, 20243

[13] 星載SAR艦船探測(cè)系統(tǒng), 軟件著作權(quán), 2015

[14] 機(jī)載SAR艦船探測(cè)系統(tǒng), 軟件著作權(quán), 2015

[15] 專(zhuān)利. 張晰, 劉根旺, 曹成會(huì). 基于極化自相關(guān)矩陣的SAR極化測(cè)量方法及系統(tǒng). 202410522164.4

[16] 專(zhuān)利. 劉根旺; 張晰; 孟俊敏. 高海況SAR船只檢測(cè)方法及應(yīng)用, 2023-8-1, 中國(guó), ZL202110147244.2.

[17] 專(zhuān)利. 周鵬, 石麗波, 張晰. 適合于調(diào)頻連續(xù)波的合成孔徑雷達(dá)距離多普勒成像方法. CN 118068332 B.

 

主持項(xiàng)目

[1] 縱向項(xiàng)目,特性課題,2025-2026. 2300萬(wàn)元

[2] 縱向項(xiàng)目,海雜波極化特性與抑制方法研究,2022-2024. 200萬(wàn)元

[3] 縱向項(xiàng)目,中高海況極化散射機(jī)理,2022-2026. 380萬(wàn)元(副主持)

[4] 國(guó)家自然科學(xué)項(xiàng)目,旋翼無(wú)人機(jī)雷達(dá)船只目標(biāo)虛擬多站三維成像與類(lèi)型識(shí)別,2020-2023. 58萬(wàn)元

[5] 國(guó)家自然科學(xué)基金企業(yè)聯(lián)合重點(diǎn)項(xiàng)目(子課題),高動(dòng)態(tài)條件極化雷達(dá)多視角艦船目標(biāo)智能識(shí)別機(jī)理與技術(shù), 2025-2028. 78萬(wàn)元

[6] 縱向項(xiàng)目,北極目標(biāo)多源融合技術(shù), 2024-2025. 110萬(wàn)元

[7] 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目子課題,SAR輻射定標(biāo)處理方法, 2023-2026. 98萬(wàn)元

[8] 無(wú)人機(jī)SAR成像處理軟件與數(shù)據(jù)處理,2024.7-2026.7. 37.8萬(wàn)元

[9] 國(guó)家自然科學(xué)項(xiàng)目,基于主被動(dòng)遙感的渤海海冰厚度及其相關(guān)參數(shù)的反演研究,2014-2016. 24萬(wàn)元

[10] 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目子任務(wù),船載技術(shù)系統(tǒng)研發(fā)與應(yīng)用,2017-2021. 72萬(wàn)元

[11] 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目子任務(wù),新型海洋微波遙感探測(cè)機(jī)理模型與應(yīng)用研究,2016-2020. 30萬(wàn)元

[12] 縱向項(xiàng)目,高海況下SAR艦船目標(biāo)極化表征與挖掘,2019-2020. 25萬(wàn)元

[13] 縱向項(xiàng)目,北極航道遙感探測(cè)與評(píng)估,2021-2022. 19.6萬(wàn)元

[14] 橫向項(xiàng)目,海洋衛(wèi)星AISSAR綜合目標(biāo)識(shí)別系統(tǒng)研制,2022-2023. 100萬(wàn)元

[15] 橫向項(xiàng)目,極地海冰厚度高精度融合探測(cè)技術(shù)研究,2024-2025. 40萬(wàn)元

[16] 橫向項(xiàng)目,多波段多極化SAR海冰散射特性研究與海冰參數(shù)指標(biāo)驗(yàn)證,2023-2025. 27萬(wàn)元

[17] 科技支撐項(xiàng)目,航空遙感技術(shù)應(yīng)用示范項(xiàng)目,2013. 50萬(wàn)元

[18] 衛(wèi)星預(yù)研項(xiàng)目,仿真處理軟件開(kāi)發(fā),2020-2021. 50萬(wàn)元

[19] 衛(wèi)星預(yù)研項(xiàng)目,雙頻干涉SAR數(shù)據(jù)處理技術(shù)研究,2017-2018. 20萬(wàn)元

[20] 航空高分專(zhuān)項(xiàng),航空高分海冰探測(cè)技術(shù),2021-2022. 13萬(wàn)元

[21] 國(guó)家重點(diǎn)實(shí)驗(yàn)室基金,基金艦船目標(biāo)電磁散射特性的表征與挖掘,2021-2022. 10萬(wàn)元

[22] 中科院關(guān)鍵技術(shù)攻關(guān)項(xiàng)目,SAR艦船-海面耦合散射建模算法研究,2022-2023. 30萬(wàn)元

[23] 中科院技術(shù)合作項(xiàng)目,X波段機(jī)載/海上平臺(tái)海雜波觀測(cè)數(shù)據(jù), 2023.12-2024.9. 10萬(wàn)元

 

科技貢獻(xiàn)

申請(qǐng)人一直從事于海洋雷達(dá)探測(cè)技術(shù)與應(yīng)用研究。圍繞國(guó)家海洋安全和海上維權(quán)執(zhí)法等國(guó)家戰(zhàn)略,開(kāi)展了海雜波解譯理論方法和艦船目標(biāo)探測(cè)技術(shù),并構(gòu)建了海上船只目標(biāo)星載SAR與機(jī)載雷達(dá)集成監(jiān)測(cè)系統(tǒng),服務(wù)于中國(guó)海警的機(jī)載新體制雷達(dá)建設(shè)。主要代表性成果有:

1.服務(wù)于射頻制導(dǎo)的海雜波數(shù)據(jù)獲取與特性表征方法

射頻制導(dǎo)工作體制特殊,為實(shí)現(xiàn)海上目標(biāo)的精確發(fā)現(xiàn),需要獲取大入射余角的海雜波數(shù)據(jù),并需要對(duì)中高海情的海雜波進(jìn)行精確的估計(jì)。然而大入射余角海雜波數(shù)據(jù)非常難獲取,申請(qǐng)人牽頭開(kāi)展大入射余角海雜波觀測(cè)實(shí)驗(yàn),構(gòu)建了大入射余角海雜波數(shù)據(jù)獲取平臺(tái),實(shí)現(xiàn)了海雜波數(shù)據(jù)的實(shí)時(shí)獲取、傳輸和處理。在此基礎(chǔ)上,發(fā)展了中高海情的海雜波建模方法,解釋了風(fēng)浪流對(duì)海雜波的生成機(jī)制,為大入射余角海雜波的雷達(dá)特性提供了基礎(chǔ)數(shù)據(jù)和理論基礎(chǔ)。

2.船只目標(biāo)精細(xì)探測(cè)與識(shí)別技術(shù)

針對(duì)小船只雷達(dá)探測(cè)能力差、船只類(lèi)型識(shí)別能力弱的問(wèn)題,分別發(fā)展了弱船只目標(biāo)檢測(cè)方法、基于機(jī)器學(xué)習(xí)船只分類(lèi)識(shí)別方法、多時(shí)相SAR船只目標(biāo)跟蹤方法和SAR船只目標(biāo)三維高程反演方法。所發(fā)展的方法將弱目標(biāo)的船海對(duì)比度提高了6個(gè)dB以上,檢測(cè)精度提高了10%以上,船只類(lèi)型的識(shí)別精度達(dá)90%。

3.海上船只目標(biāo)星載SAR與機(jī)載雷達(dá)集成監(jiān)測(cè)系統(tǒng)

雷達(dá)在海上遠(yuǎn)距離探測(cè)時(shí),雜波干擾大、目標(biāo)成像的質(zhì)量差、成像速度慢,大大限制了雷達(dá)對(duì)目標(biāo)的成像能力和探測(cè)距離。針對(duì)該問(wèn)題,發(fā)展了海雜波表征模型、目標(biāo)重聚焦成像方法和雷達(dá)并行成像處理算法,不僅使船只目標(biāo)的成像質(zhì)量更加清晰,而且成像速度提高了3~4倍。所發(fā)展的技術(shù)支撐了新體制機(jī)載廣域搜索與成像雷達(dá)系統(tǒng)中的研發(fā),經(jīng)實(shí)際機(jī)載掛飛測(cè)試,雷達(dá)的探測(cè)幅寬由15~20 km提高到45 km。


X
溫馨提示
您即將離開(kāi)海洋一所網(wǎng)站跳轉(zhuǎn)到第三方網(wǎng)站,請(qǐng)確認(rèn)是否繼續(xù)?
留在本站
立即跳轉(zhuǎn)