張晰,博士,自然資源部第一海洋研究所研究員,中國石油大學(華東)博生生導師和碩士生導師,中國海洋學會人工智能海洋學專委會委員、中國地理信息產(chǎn)業(yè)協(xié)會海洋時空信息工委會委員、中國自動化學會國防大數(shù)據(jù)專業(yè)委員會委員。Frontiers in Marine Science執(zhí)行編輯,《電波科學學報》編委,IEEE Geoscience and Remote Sensing Magazine等多個SCI特刊的編輯。
主要從事SAR海洋遙感與雷達目標探測技術(shù)研究,作為負責人主持國家自然科學基金、中央軍委裝備發(fā)展部預(yù)研基金重點項目、中國海監(jiān)科技支撐項目等項目20余項。現(xiàn)已發(fā)表學術(shù)論文100余篇,其中SCI/EI論文70余篇;以第一作者和通訊作者SCI論文30余篇,多篇論文進入ESI前1%高被引和ESI熱點論文。獲山東省科技進步等省部級獎勵6項;出版專著3部,編制行業(yè)標準1項。
1. Xi Zhang; Gui Gao; Si-Wei Chen. Polarimetric Autocorrelation Matrix: A New Tool for Joint Characterizing of Target Polarization and Doppler Scattering Mechanism, IEEE Transactions on Geoscience and Remote Sensing, 2024. 10.1109/TGRS.2024.3398632. (ESI高被引論文)
2. Chi Zhang, Xi Zhang (通訊作者), Gui Gao, Haitao Lang, Genwang Liu, Chenghui Cao, Yuying Song, Yanan Guan and Yongshou Dai. Development and Application of Ship Detection and Classification Datasets: A review, IEEE Geoscience and Remote Sensing Magazine, 2024, 10.1109/MGRS.2024.3450681. (ESI高被引論文+熱點論文)
3. Xi Zhang; Wolfgang Dierking; Jie Zhang; Junmin Meng; Haitao Lang; Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images, The Cryosphere, 2016.7.19, 10(4): 1529-1545.
4. Zhang Xi, Zhu Y, Zhang J, et al. Assessment of Arctic Sea Ice Classification Ability of Chinese HY-2B Dual-Band Radar Altimeter During Winter to Early Spring Conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9855-9872.
5. Xi Zhang; Wolfgang Dierking; Jie Zhang; Junmin Meng; A Polarimetric Decomposition Method for Ice in the Bohai Sea Using C-Band PolSAR Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 47-66.
6. Zhang Xi; Zhang Jie; Liu Meijie; Meng Junmin; Assessment of C-band compact polarimetry SAR for sea ice classification, Acta Oceanologica Sinica, 2016.5, 35(5): 79-88.
7. Zhang Xi; Zhang Jie; Meng Junmin; SuTengfei; Analysis of multi-dimensional SAR for determining the thickness of thin sea ice in theBohai Sea, Journal of Oceanology and Limnology, 2013.5, 31(3):681-698.
8. Xi Zhang, Yixun Zhu, Jie Zhang, Junmin Meng, Xiaona Li, Xingxing Li. An Algorithm for Sea Ice Drift Retrieval Based on Trend of Ice Drift Constraints from Sentinel-1 SAR Data. Journal of Coastal Research, SI(102): 113-126, 2020.
9. Zhang X, Zhao Q, Gao G, et al. Impact and Correction of Sea Ice, Snow, and Sea-water Density on Arctic Sea Ice Thickness Retrieval from Ku-band SAR Altimeters. IEEE Journal on Miniaturization for Air and Space Systems, 2022.
10. Chenghui Cao; Liwei Bao; Gui Gao; Genwang Liu; Xi Zhang (通訊作者). A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning from Sentinel-1 Wave Mode Data, IEEE Transactions on Geoscience and Remote Sensing, 2024. 10.1109/TGRS.2024.3369080
11. Guan Y, Zhang X (通訊作者), Chen S, et al. Fishing Vessel Classification in SAR Images using a Novel Deep Learning Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023.
12. Guan Y, Zhang J, Zhang Xi (通訊作者), et al. Identification of fishing vessel types and analysis of seasonal activities in the northern South China Sea based on AIS data: A case study of 2018. Remote Sensing, 2021, 13(10): 1952.
13. Liu M, Yan R, Zhang Xi (通訊作者), et al. Arctic Sea Ice Classification Based on CFOSAT SWIM Data at Multiple Small Incidence Angles. Remote Sensing, 2021, 14(1): 91.
14. Bao L, Zhang Xi (通訊作者), Cao C, et al. Impact of Polarization Basis on Wind and Wave Parameters Estimation Using the Azimuth Cutoff From GF-3 SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16.
15. Zhang R, Zhang J, Zhang Xi (通訊作者), et al. Influence of Radar Parameters and Sea State on Wind Wave-Induced Velocity in C-Band ATI SAR Ocean Surface Currents. Remote Sensing, 2022, 14(17): 4135.
16. Wang, P.; Zhang Xi (通訊作者); Shi, L.; Liu, M.; Liu, G.; Cao, C.; Wang, R. Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data. Remote Sens. 2024, 16, 1100. https://doi.org/10.3390/rs16061100.
17. Guan Y, Zhang J, Zhang Xi (通訊作者), et al. Study on the activity laws of fishing vessels in China's sea areas in winter and spring and the effects of the COVID-19 pandemic based on AIS data. Frontiers in Marine Science, 2022: 588.
18. Liu M, Yan R, Zhang Xi (通訊作者), et al. Sea ice recognition for CFOSAT SWIM at multiple small incidence angles in the Arctic[J]. Frontiers in Marine Science, 2022: 1777.
19. Zhang C, Zhang Xi (通訊作者), Zhang J, et al. Evaluation and Improvement of Generalization Performance of SAR Ship Recognition Algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9311.
20. Fang H, Zhang Xi (通訊作者), Shi L, et al. Evaluation of Arctic Sea Ice Drift Products Based on FY-3, HY-2, AMSR2, and SSMIS Radiometer Data. Remote Sensing, 2022, 14(20): 5161.
21. Guan Y, Zhang J, Zhang Xi (通訊作者), et al. Impacts of the COVID-19 Epidemic on Ship Activity in Dongying Port Waters[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2022.
22. Lang Haitao; Zhang Jie; Zhang, Xi (通訊作者); Meng Junmin; Ship Classification in SAR Image by Joint Feature and Classifier Selection, IEEE Geoscience and Remote Sensing Letters, 2016.2, 13(2): 212-216.
23. Shen Xiaoyi; Simil? Markku; Dierking Wolfgang; Zhang Xi (通訊作者); Ke Changqing; Liu Meijie; Wang Manman. A New Retracking Algorithm for Retrieving Sea Ice Freeboard from CryoSat-2 Radar Altimeter Data during Winter–Spring Transition. Remote Sens. 2019, 11, 1194
24. Xiaoyi Shen; Jie Zhang; Junmin Meng; Changqing Ke; Xi Zhang(通訊作者); Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier–Feature Assembly, IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1948-1952.
25.Chi Zhang, Genwang Liu, Chenghui Cao, Jun Sun, Yongshou Dai, Xi Zhang(通訊作者). SCA-Net A Network Based on Multi-task Learning for Sea Clutter Amplitude Distribution Prediction of SAR Images, IEEE Geoscience and Remote Sensing Letters, 2025, 10.1109/LGRS.2025.3550409.
26. Song Yuying; Liu Genwang; Zhang Xi (通訊作者); Zhang Chi; Cao Chenghui; Zhou Peng. A Method for Retrieving Ship Freeboard Height by Single-Pass PolSAR Data, IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
27. Liu Wensong; Sheng Hui; Zhang Xi(通訊作者);Sea ice thickness estimation inthe Bohai Sea using geostationary ocean color imager data, Acta Oceanologica Sinica, 2016, 35(7): 105-112.
28. Guo Jie; Zhang Tianlong; Zhang Xi (通訊作者); Liu Genwang; Impact of emulsification of crude oil on normalized radar cross section. Journal of Oceanology and Limnology, 2019. https://doi.org/10.1007/s00343-019-8298-3
29. Yanan Guan, Xi Zhang(共同第一作者), Gui Gao, Chenghui Cao, Zhongwei Li, Shihao Fu, Genwang Liu. A new indicator for assessing fishing ecological pressure using multi-source data: A case study of the South China Sea. Ecological Indicators, Volume 170, 2025, 113096, ISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2025.113096.
獲獎與榮譽
[1] “目標聯(lián)合監(jiān)視關(guān)鍵技術(shù)與應(yīng)用”,2024年山東省科學技術(shù)進步獎一等獎;個人排名第四.
[2] “天基多源信息融合海面運動目標感知關(guān)鍵技術(shù)與裝備”,2022年測繪科學技術(shù)獎二等獎;中國測繪學會;個人排名第三.
[3] “復(fù)雜海洋環(huán)境SAR時敏目標解譯關(guān)鍵技術(shù)與重大應(yīng)用”,2024年地理信息科技進步獎一等獎;中國地理信息產(chǎn)業(yè)協(xié)會;個人排名第四.
[4] “成像雷達目標極化旋轉(zhuǎn)域識別技術(shù)與應(yīng)用”,2023年發(fā)明創(chuàng)業(yè)獎創(chuàng)新獎一等獎;中國發(fā)明協(xié)會; 個人排名第四.
[5] “基于多源遙感手段的北海區(qū)海洋災(zāi)害業(yè)務(wù)化應(yīng)急監(jiān)測系統(tǒng)研制與應(yīng)用”,2016年度海洋科學技術(shù)獎一等獎;國家海洋局、中國海洋學會、中國太平洋學會、中國海洋湖沼學會;個人排名第五.
[6] “我國海洋衛(wèi)星極區(qū)海冰遙感反演方法”,中國太平洋學會國家級優(yōu)秀海洋圖書獎,2023;個人排名第三.
[7] 便攜式多載體毫米波合成孔徑雷達成像算法研究與創(chuàng)新應(yīng)用,山東省研究生創(chuàng)新成果,2023;個人排名第二.
[8] 國家遙感中心和歐洲空間局“龍計劃”國際合作突出貢獻獎,排名第1,2016.
[9] 《極化SAR海洋應(yīng)用理論與方法》, 孟俊敏, 張晰. 國防工業(yè)出版社, 2024.
[10] 《多通道SAR和AIS海上目標綜合感知理論與方法》,高貴, 張晰, 姚力波, 劉濤. 海洋出版社, 2025.
[11] 《我國海洋衛(wèi)星極區(qū)海冰遙感反演方法》,石立堅、王其茂、張晰,海洋出版社, 2022。
[12] 行業(yè)標準. 孟俊敏; 張晰; 劉根旺; 計科峰; 陳思偉; 高貴; 冷祥光; 熊博蒞; 熊偉; 姚力波; 張馳. 海上船只目標衛(wèi)星遙感監(jiān)測技術(shù)規(guī)范, CH/T 7004-2024, 自然資源部, 2024年3月
[13] 星載SAR艦船探測系統(tǒng), 軟件著作權(quán), 2015
[14] 機載SAR艦船探測系統(tǒng), 軟件著作權(quán), 2015
[15] 專利. 張晰, 劉根旺, 曹成會. 基于極化自相關(guān)矩陣的SAR極化測量方法及系統(tǒng). 202410522164.4
[16] 專利. 劉根旺; 張晰; 孟俊敏. 高海況SAR船只檢測方法及應(yīng)用, 2023-8-1, 中國, ZL202110147244.2.
[17] 專利. 周鵬, 石麗波, 張晰. 適合于調(diào)頻連續(xù)波的合成孔徑雷達距離多普勒成像方法. CN 118068332 B.
主持項目
[1] 縱向項目,特性課題,2025-2026. 2300萬元
[2] 縱向項目,海雜波極化特性與抑制方法研究,2022-2024. 200萬元
[3] 縱向項目,中高海況極化散射機理,2022-2026. 380萬元(副主持)
[4] 國家自然科學項目,旋翼無人機雷達船只目標虛擬多站三維成像與類型識別,2020-2023. 58萬元
[5] 國家自然科學基金企業(yè)聯(lián)合重點項目(子課題),高動態(tài)條件極化雷達多視角艦船目標智能識別機理與技術(shù), 2025-2028. 78萬元
[6] 縱向項目,北極目標多源融合技術(shù), 2024-2025. 110萬元
[7] 國家重點研發(fā)計劃項目子課題,SAR輻射定標處理方法, 2023-2026. 98萬元
[8] 無人機SAR成像處理軟件與數(shù)據(jù)處理,2024.7-2026.7. 37.8萬元
[9] 國家自然科學項目,基于主被動遙感的渤海海冰厚度及其相關(guān)參數(shù)的反演研究,2014-2016. 24萬元
[10] 國家重點研發(fā)計劃項目子任務(wù),船載技術(shù)系統(tǒng)研發(fā)與應(yīng)用,2017-2021. 72萬元
[11] 國家重點研發(fā)計劃項目子任務(wù),新型海洋微波遙感探測機理模型與應(yīng)用研究,2016-2020. 30萬元
[12] 縱向項目,高海況下SAR艦船目標極化表征與挖掘,2019-2020. 25萬元
[13] 縱向項目,北極航道遙感探測與評估,2021-2022. 19.6萬元
[14] 橫向項目,海洋衛(wèi)星AIS與SAR綜合目標識別系統(tǒng)研制,2022-2023. 100萬元
[15] 橫向項目,極地海冰厚度高精度融合探測技術(shù)研究,2024-2025. 40萬元
[16] 橫向項目,多波段多極化SAR海冰散射特性研究與海冰參數(shù)指標驗證,2023-2025. 27萬元
[17] 科技支撐項目,航空遙感技術(shù)應(yīng)用示范項目,2013. 50萬元
[18] 衛(wèi)星預(yù)研項目,仿真處理軟件開發(fā),2020-2021. 50萬元
[19] 衛(wèi)星預(yù)研項目,雙頻干涉SAR數(shù)據(jù)處理技術(shù)研究,2017-2018. 20萬元
[20] 航空高分專項,航空高分海冰探測技術(shù),2021-2022. 13萬元
[21] 國家重點實驗室基金,基金艦船目標電磁散射特性的表征與挖掘,2021-2022. 10萬元
[22] 中科院關(guān)鍵技術(shù)攻關(guān)項目,SAR艦船-海面耦合散射建模算法研究,2022-2023. 30萬元
[23] 中科院技術(shù)合作項目,X波段機載/海上平臺海雜波觀測數(shù)據(jù), 2023.12-2024.9. 10萬元
科技貢獻
申請人一直從事于海洋雷達探測技術(shù)與應(yīng)用研究。圍繞國家海洋安全和海上維權(quán)執(zhí)法等國家戰(zhàn)略,開展了海雜波解譯理論方法和艦船目標探測技術(shù),并構(gòu)建了海上船只目標星載SAR與機載雷達集成監(jiān)測系統(tǒng),服務(wù)于中國海警的機載新體制雷達建設(shè)。主要代表性成果有:
1.服務(wù)于射頻制導的海雜波數(shù)據(jù)獲取與特性表征方法
射頻制導工作體制特殊,為實現(xiàn)海上目標的精確發(fā)現(xiàn),需要獲取大入射余角的海雜波數(shù)據(jù),并需要對中高海情的海雜波進行精確的估計。然而大入射余角海雜波數(shù)據(jù)非常難獲取,申請人牽頭開展大入射余角海雜波觀測實驗,構(gòu)建了大入射余角海雜波數(shù)據(jù)獲取平臺,實現(xiàn)了海雜波數(shù)據(jù)的實時獲取、傳輸和處理。在此基礎(chǔ)上,發(fā)展了中高海情的海雜波建模方法,解釋了風浪流對海雜波的生成機制,為大入射余角海雜波的雷達特性提供了基礎(chǔ)數(shù)據(jù)和理論基礎(chǔ)。
2.船只目標精細探測與識別技術(shù)
針對小船只雷達探測能力差、船只類型識別能力弱的問題,分別發(fā)展了弱船只目標檢測方法、基于機器學習船只分類識別方法、多時相SAR船只目標跟蹤方法和SAR船只目標三維高程反演方法。所發(fā)展的方法將弱目標的船海對比度提高了6個dB以上,檢測精度提高了10%以上,船只類型的識別精度達90%。
3.海上船只目標星載SAR與機載雷達集成監(jiān)測系統(tǒng)
雷達在海上遠距離探測時,雜波干擾大、目標成像的質(zhì)量差、成像速度慢,大大限制了雷達對目標的成像能力和探測距離。針對該問題,發(fā)展了海雜波表征模型、目標重聚焦成像方法和雷達并行成像處理算法,不僅使船只目標的成像質(zhì)量更加清晰,而且成像速度提高了3~4倍。所發(fā)展的技術(shù)支撐了新體制機載廣域搜索與成像雷達系統(tǒng)中的研發(fā),經(jīng)實際機載掛飛測試,雷達的探測幅寬由15~20 km提高到45 km。